
~ Pergamon
Int. J. So/ids Structures Vol. 31. No.7, pp. 903-911. 1994

© 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

002~7683/94 $6.00 + .00

AN ELASTODYNAMIC SOLUTION FOR AN
ANISOTROPIC HOLLOW SPHERE

WANG XI
Department of Applied Mechanics, Nanjing University of Science and Technology,

Nanjing 210014, People's Republic of China

(Received 9 June 1993; in revised/orm 10 September 1993)

Abstract-An exact solution for the problem of radial vibrations and dynamic stresses in an
anisotropic hollow sphere acted on by a dynamic interior and exterior pressure is obtained. Formulas
for spherically symmetric anisotropic problems are derived and results are carried out for some
practical examples in which an anisotropic hollow sphere is subjected to a sudden load and an
exponential decaying shock pressure. The features of the solution are related to the propagation of
the spherical wave, and the radial vibrations of the anisotropic sphere are discussed.

I. INTRODUCTION

The study of radial vibrations and dynamic stresses in an elastic hollow sphere subjected
to exterior and interior time-dependent pressures is a typical elastodynamic problem, and
is very useful in engineering applications. Analyses and calculations for an isotropic spheri­
cal shell under a radially dynamic load have been studied for many years by several authors
(Huth, 1955; Baker, 1961; Baker et al., 1966; Mckinney, 1971; Rose et al., 1973; Pan and
Chow, 1976; Pao and Ceranoglu, 1978; Pao, 1983). However, if the sphere is not isotropic,
the cases so far studied are much fewer in number because the solving process is more
complex.

In this paper, the elastodynamic equation for an anisotropic hollow sphere is derived
and a simple solution is presented. The anisotropic elastodynamic equation is decomposed
into a quasi-static equation with inhomogeneous boundary conditions and a dynamic
equation with homogeneous boundary conditions. By using the method described in Lekh­
nitskii (1981), we can solve the anisotropic quasi-static equation. The solution to the
anisotropic dynamic equation can be obtained by means of finite Hankel transform (Cinelli,
1965). Thus, the solution for an anisotropic elastodynamical sphere is rigorously derived.

Finally, we calculate some practical examples in which an anisotropic hollow sphere
is subjected to a uniform sudden load and an exponential decaying shock. The histories
and distributions of the dynamic stresses are given and the features of the solution which
are related to the propagation of the spherical wave and radial vibrations of an anisotropic
sphere are discussed.

2. ANISOTROPIC ELASTODYNAMIC EQUATION AND METHOD OF SOLUTION

We start this paper by considering an anisotropic hollow sphere (spherical vessel) acted
on by a dynamic internal and external pressure t/!I(t), t/!2(t) distributed uniformly over the
surface. The investigation is most conveniently carried out by using a spherical coordinate
system r, fJ, qJ with the origin at the centre of the sphere. The material of a given sphere is
assumed to possess transverse isotropy about any radius vector drawn from the common
centre of the sphere to a given point. It is obvious that in the case of the elastic properties
indicated, the distribution of stress and strain depends only on the radial variable r, and all
points are displaced only in radial directions during deformation. Denoting the single
(radial) component of displacement by U(r) , we have the strain components referred to
spherical coordinates
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Y6rp = Yrrp = Yr6 = O. (I)

Since all shear deformations are zero, it follows that the shear stresses are zero. If the
engineering constants are introduced, the generalized Hooke's law takes the form

(2)

where elastic moduli Alj is related to E and v as follows:

(3)

In the above formulas, Er and E6 are Young's moduli for tension along a radius vector rand
in a direction perpendicular to it, Vr is Poisson's ratio characterizing transverse contraction in
a direction perpendicular to r when tension is applied in the r direction and V6 is Poisson's
ratio characterizing contraction in a plane normal to a radius vector for tension in the same
plane. Only one of the equilibrium equations for a continuous body referred to a spherical
coordinate system remains

with the following boundary conditions:

(Jr(a, t) = t/1 1(t)

(Jr(b, t) = t/12(t),

(4a)

(4b)

(4c)

where a and b are the inner and outer radii, respectively, and p is the mass density. From
(1), (2) and (4), we obtain an anisotropic elastodynamic equation and boundary conditions
for the displacement

oU(a, t) 2U(a, t)
(Jr(a,t)=A II a +A 12 =t/1I(t)

r a

(b )
_ oU(b, t) A 2U(b, t) _ .1. ()

(Jr ,t -All or + 12 b -'1'2 t

(5a)

(5b)

(5c)

where V = .J(A 1Iip) is the spherical wave speed. The initial conditions are expressed as
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U(r,O) = 0, U(r,O) = O.

Let us suppose that

U(r, t) = Us(r, t) +Ud(r, t)
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(5d)

(6)

where Us(r, t) is a quasi-static solution of the basic eqn (Sa), which satisfies the following
quasi-static equation and inhomogeneous boundary conditions

A
oUs(a, t) 2A Us(a, t) _ .1. ()

II ~ + 12---'#'1 tur a

A
oUs(b, t) 2A Us(b, t) _ .1. ()

II or + 12 b -'#'21.

The general integral of eqn (7) is of the form

In the above formula, we have

(f)1(r) = CIr"-o,s+C2r-n-O.S

(f)2(r) = C 3r"-O.s +C4r-n- O.S,

where

_cI.S+nbl.S-n

C I = (I-C2n)[2A 12 +A II (n-0.5)]

cl.S+nbI. S+n
C2 = 2

(1- C n)[2A 12 - A I I (n+O.5)]

C
3

= _c-n-I.SC
1

C4 = -C'-I. SC2

(7a)

(7b)

(7c)

(8a)

(8b)

(8c)

(9a)

(9b)

(ge)

(9d)

n= (ge)

C= alb. (9f)

Substituting (6) into (5) and utilizing (7) provides an inhomogeneous dynamic equation
with homogeneous boundary conditions for UAr, t)

A oUd(a, t) 2A Ud(a, t) - 0
II or + 12 a -

A oUib, t) 2A Ud(b, t) - 0
II or + 12 b -

Ud(r,O) = O. Ud(r.O) = O.

(lOa)

(lOb)

(lOe)

(IOd.e)
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Suppose that

VAr, t) = r- 1/2f(r, t).

Substituting eqn (II) into (10), yields

of(a, t) 4A 12- A ll f( ) = 0
Cl + 2A a,tur Ita

iJf(b, t) 4A 12 - All f b )_
ar + 2A IIb (, t - 0

f(r,O) = 0, J(r,O) = 0,

(11)

(12a)

(12b)

(12c)

(l2d,e)

where

k 2 = 3(A 22 +A 23 -A 13 )

2A 11

Vsl(r, t) = r'/2V.(r, t)

(13a)

(l3b)

and V.(r, t) is the known solution as shown in (8).
The homogeneous equation (let Vs = 0) of eqn (l2a) with homogeneous boundary

(12b,c) is solved by assuming

fdO(r, t) = g(r) exp Uwt).

From (12) and (14), we have the following eigen-equation

where

Ya = ~IY,a~ta)+haYk(~la), Ja = ~tJk(~ta)+haJk(~la)

Yb = ~t Yka,b)+hbYk(~tb), Jb = ~tJk(~tb)+hbJk(~tb)

(14)

(l5a)

(l5h-g)

Jk ( 'l) and Yk ( ~ir) are the first and second kind ofthe kth-order Bessel function, respectively.
In these expressions, 'i (i = 1,2, ... , n) express a series of positive roots for natural eigen­
equation (15a). The natural frequencies are

From Cinelli (1965), definingJ( ,,, t) as the finite Hankel transform of f(r, t) yields

J( ~/l t) = H[f(r, t)l = f rf(r, t)G( ~tr) dr.

Then, by making use of the inverse of the transform, we have

f(r, t) = L F( ~I )!(~" t)G( ~Ir),
t

(16)

(17)

(18a)



The problem of vibrations and stresses acting on a hollow sphere

where

F(~t) = 1b
a r[G('trW dr

G('tr) = Jk(~tr)Ya- Yk(~tr)Ja'

Applying the finite Hankel transform (17) to (12a), we have

where

907

(18b)

(18c)

(19)

The first two terms on the left-hand side of (19) should be equal to zero in view of the
homogeneous boundary conditions (12b, c). Thus, (19) is reduced to

(20)

Applying the Laplace transform to eqn (20), we obtain

(21)

where p is the parameter of the Laplace transform. The inverse Laplace transform for (21)
gives

It(~t> t) = -I/Ij(t)+~tV£I/Ij('c) sin [~tV(t-'t')] d't'

~j( ~t) = H[$j(r)], j = 1,2.

From formulas (18), the solution of fer, t) is obtained as follows:

f(r,t) = L,F(~t)G('tr)J(~t,t).
t

(22)

(23a)

(23b)

(24)

Substituting (24) into (11), we get the dynamic solution for inhomogeneous dynamic
equation with homogeneous boundary conditions

Uir, t) = L, r- 1/2F( 't)G( ~tr)J(~t> t).
t

(25)

Thus, from (6), (8) and (25), the solution of the anisotropic elastodynamic equation (5) is
written as

U(r,t) = <1> 1(r)I/I 1(t) +$2(r) 1/1 2(t) + L,r-I/2F('t)G(~tr)J(~t,t). (26)
t

The stress field is easily found from formulas (26), (2) and (1).
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3. EXAMPLES AND DISCUSSIONS

As examples, results are carried out in the case of an anisotropic hollow sphere with
b/a = 2. The material of a given body is assumed to possess transverse isotropy along any
radius vector drawn from the common centre of the spheres to a given point. The material
properties are specified as E, = 200 GPa, E8/E, = 25/9, v, = V8 = 0.25. The mass density is
p = 0.0096 N/cm 3

•

Note that the solution (26) comprises two parts. The first part is a quasi-static part
and the second part is the dynamic one which is associated to the radial vibration and
propagation of spherical waves in an anisotropic sphere. The positive roots of eqn (15)
which give the characteristic values ~i and the natural frequencies Wi are calculated. The
first ten values of Wi and the increments liwi for an anisotropic hollow sphere and an
isotropic hollow sphere are listed in Table I. The natural frequencies Wi of the material
properties with Eo = 25E,/9 are larger than that of the material properties with Eo = E,.
No matter what the material properties are the differences of liwi become smaller and
smaller as the mode number i gets larger and larger. It means that the natural frequencies
Wi increase with approximately a constant value versus the mode number i, when such a
parameter is sufficiently high. From Table 2, we see that the natural frequencies Wi also
vary with the ratio b/a no matter what the material properties are. The first-order frequency
WI decreases when b/a increases.

We assume that only the internal boundary of an anisotropic sphere is subjected to a
dynamic stress I/J] (t). In this case, we have

(27)

In such an expression when a equals zero, the dynamic load I/J](t) is a sudden uniform
pressure form. When a is not equal to zero, the dynamic load I/J ](t) becomes an exponential
decaying shock pressure. In this case, we suppose a = 500. In all results, the stresses are
normalized by the amplitude ofapplied pressure (1'0, then ii, = (1',/(1'0' the wall thickness ratio
is b/a = 2, the time period T = tV/(b-a), R = (r-a)/(b-a), and Ii expresses cor­
responding static stress.

Figure I shows the histories and distribution of the dynamic stresses for an isotropic
sphere. In this case, E, = 200 GPa, Eo = E" a = O. Figure 2 shows tqe histories and
distribution of the dynamic stresses for an anisotropic sphere. In this case, E, = 200 GPa,
Eo = 25E,/9, a = O. Comparing Fig. I with Fig. 2(a, b), we see that the radial stress response
of the isotropic sphere in Fig. I (a) is a close approximation to that of anisotropic sphere
in Fig. 2(a) because the radial material properties of two spheres are the same. However,
the tangential stress amplitude of the anisotropic sphere in Fig. 2(b) is larger than that of
the isotropic sphere in Fig. I(b), because the tangential properties of the two spheres are
very different.

The histories and distributions of the dynamic stress for anisotropic spherical shells
subjected to an exponential decaying shock pressure where IX = 500 are shown in Fig. 3.

Table I. The first ten values of Wi and !:f.Wi for bla = 2

2 3 4 5 6 7 8 9 10

(E IE) = 1 wi{lls)
0, !:f.wiO/s)

(E IE) = 2519 w,{l/s)
o , Aw,{l/s)

5091 16,813 31,954 47,480 63,098 78,752 94,425 110,108 125,797
11,722 15.141 15.526 15.618 15,654 15.673 15.683 15.689

9724 21,625 40,164 59,374 78,756 98,206 117,693 137,198 156,717
11,901 18,539 19,210 19,382 19,450 19,487 19,505 19,519

Table 2. The lowest Wi for different ratios of bla

141,490
15.693

176,244
19,527

bla 2 4 6 8 to 20 40 60 80 100

Wi (EoIE,) = I 5091 3043 2100 1590 1277 640 320
(lIs) (EoIE,) = 2519 9724 6348 4329 3255 2571 1216 572

213
412

160 128
288 212



The problem of vibrations and stresses acting on a hollow sphere 909

(T)

i6. (b) RoaO.O

2

0

-1

-2

20 10 20

(2)

10

(T)

RoaO.O (1)
R-O.S (2)

o

O.S

i6T (a)

1.0

0.0

-O.S

(1)
-1.0 ~-_...:..:;......--------+

Fig. 1. The isotropic hollow sphere, E, = Eo = 200 GPa, Of = 0, iii = uiuo, T = tV/(b-a),
R = (r-a)/(b-a).

Because of the small wall thickness, the effects of the wave reflected between the inner and
outer walls on dynamic stresses must be considered. Except for the radial stress at the inner
boundary, where U, = -exp (-rxt) as shown in Fig. 3(a), the stresses at the other points
oscillate dramatically as shown in Figs 2 and 3.

Because the oscillations are accompanied with stress waves propagating between the
inner and outer boundaries, where the reflected waves are produced successively upon the
arrival of the incident waves, the numerical results concerning the distribution of the stress
fields vs time presented in all the figures possess sharp profiles similar to those given by
Hata (1991).

The histories of the radial and tangential stresses at r = a are shown in the (a) and (b)
parts of the figures, respectively. It should be mentioned that the maximum amplitude of
the tangential stress at r = a is much larger than that of the radial stress at r = a; this is

i6T (a) R-O.O (1) i6.
1.0 R-O.S (2) 2

O.S
(2)

0.0 0

-O.S -1

-1.0 -2

0 10 20 0 10 20

(T) (T)

i6. (c) R..O.S
i6. (d) R-1.0

2 2

0 0

-1 -1

-2 -2

0 10 20 0 10 20

(T) (T)

Fig. 2. The anisotropic hollow sphere, E, = 200 GPa, Eo = 25E,/9, Of = 0, iii = uifT", T = tV/(b- a),
R = (r-a)/(b-a).
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Fig. 3. The anisotropic hollow sphere, E,= 200 GPa, Eo = 25E,/9, 0( = 500, ai = rJt!l1o,
T = tV/(b-a), R = (r-a)/{b-a).

because the tangential stiffness is much larger than the radial stiffness of a spherical shell.
Because of the wave property of strong discontinuity, the sign of the tangential stress at
the wavefront is reversed as compared to that of the static stress from Fig. 2(b) and Fig.
3(b). This is similar to the result of an isotropic cylindrical cavity in infinite elastic medium
under impact pressure given by Selberg (1952).

From eqn (26) we can see that the solution is composed ofan anisotropic static solution
and a dynamic solution with homogeneous boundary conditions. The effects of the reflected
wave mean that the histories of stresses oscillate dramatically around the static stress. The
oscillating amplitude of the stress mainly depends on the loading rate, but not the loading
amplitude. On the other hand, from ex = 0 to 500, the source spectrum is effectively changed
only as time t increases dramatically. At t = 0, the loading amplitude for ex = 0 is the same
as that for ex = 500. Considering the above reasons the results presented in Figs 2 and 3
have only a small difference when the time t is less, and the loading rate is the same.

Finally, we conclude that the present solution is valid theoretically. The results obtained
can be used as a basis for the assessment of various approximate theories.
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